
Alert Detection in System Logs

Adam J. Oliner∗, Alex Aiken
Stanford University

Stanford, CA 94305-9025 USA
{oliner,aiken}@cs.stanford.edu

Jon Stearley
Sandia National Laboratories†

Albuquerque, NM 87111 USA
jrstear@sandia.gov

Abstract

We present Nodeinfo, an unsupervised algorithm for
anomaly detection in system logs. We demonstrate Node-
info’s effectiveness on data from four of the world’s most
powerful supercomputers: using logs representing over 746
million processor-hours, in which anomalous events called
alerts were manually tagged for scoring, we aim to auto-
matically identify the regions of the log containing those
alerts. We formalize the alert detection task in these terms,
describe how Nodeinfo uses the information entropy of mes-
sage terms to identify alerts, and present an online version
of this algorithm, which is now in production use. This
is the first work to investigate alert detection on (several)
publicly-available supercomputer system logs, thereby pro-
viding a reproducible performance baseline.

1 Introduction

For a large production computer system, like a super-
computer, unscheduled downtime carries a huge cost: the
equipment and personnel required to find and fix the causes
of downtime are a major contributor to the total cost of own-
ing such a system. The data that these systems generate,
typically in the form of system logs, are the primary av-
enue by which system administrators gain insight into the
behavior of production systems. There is an increasing need
for better tools for wading through the plethora of data that
large systems generate.

In particular, logs are used to detect and localize faults.
The manifestation of a fault in the log is an alert; every line
in a log has an associated alert category, which may be null.
Lines with a non-null alert category (henceforth alerts) are
messages that merit the attention of a system administrator,

∗Work was funded in part by the U.S. Department of Energy High Per-
formance Computer Science Fellowship.
†Sandia is a multiprogram laboratory operated by Sandia Corporation,

a Lockheed Martin Company, for the United States Department of Energy
under Contract DE-AC04-94AL85000.

either because immediate action must be taken or because
there is an indication of an underlying problem. Many alerts
may be symptomatic of the same failure. Failures may be
anything from a major filesystem malfunction to a transient
connection loss that kills a job (see Oliner [8] for examples).
The task of alert detection is to automatically separate both
new and known alerts from innocuous messages (noise).

In this paper, we formalize the alert detection task and
propose a metric called binary scoring that we found to ap-
propriately quantify operational value (Section 3). We then
present Nodeinfo, an unsupervised alert detection algorithm
that considers the information entropy of message terms
(Section 4). Nodeinfo may be applied to any timestamped
and tokenizable text log, it requires no system-specific in-
formation. Using nearly 750 million supercomputer log
messages (81 GB) from a public data repository [8], we
demonstrate Nodeinfo’s effectiveness on four separate sys-
tems (Sections 5 and 6).

The analysis gives us deeper insight into the logs that
even months of prior study did not provide. First, we iden-
tify and confirm ten new alert categories, yielding new alert
messages on all four systems (Section 5.1). Second, we
observe that similar computers, correctly executing simi-
lar workloads, tend to generate similar logs (Section 5.3),
and demonstrate how statistical algorithms can exploit this
fact to obtain substantial performance improvements (Sec-
tion 6). Specifically, our algorithm ultimately achieves up
to seven times baseline performance on some workloads.

Nodeinfo is currently in production use on at least three
supercomputers. The data sets and code are public [13, 14],
so the results in this paper are verifiable and reproducible;
this work provides a performance baseline for alert detec-
tion. These first steps have already improved the system
administration task for the machines under study, and we
are confident that further efforts will be similarly rewarded.

2 Related Work

System logs are generally readily available and often
contain critical clues to causes of failure, so many tech-

niques for detecting alerts in logs have been proposed.
Most prior works focus on logs with dependable structure
(easily tokenizeable into message-type-ID’s), and identify
alerts according to a severity field. These attempts in-
clude pattern-learning [2], data mining techniques to dis-
cover trends and correlations [7, 12, 17, 19], and message
timing [4]. However, system logs are notoriously unstruc-
tured and “severity” is not a dependable alert indicator [8].

Less work has been done in the area of unstructured mes-
sage content. Attempts to apply techniques from genomic
sequence mining to logs [12, 18] have run up against scaling
problems. Vaarandi has applied clustering [16] and Apriori
data mining [17], and was the first to encode word positions
in his analyses (e.g., the first word of the message, the sec-
ond, etc.), thereby effectively capturing a simple form of
message context. This paper extends the understanding of
how valuable such position encoding can be.

Reuning [9] and Liao [5] have each applied simple term
weighting schemes to intrusion detection in logs, but Re-
uning concludes that his false positive rate renders the ap-
proach unusable in practice. We apply the more complex
“log.entropy” weighting scheme that has been shown to be
highly effective for information retrieval tasks [1].

Schroeder and Gibson conduct a long-term study of
faults on clusters at Los Alamos National Labs [11]. They
use a remedy database, a data set of failures (no noise) de-
rived from system logs using a combination of automated
scripts and manual effort, rather than the raw logs.

In this paper, we analyze system logs as they actually are:
huge, unstructured, time-varying, ambiguous, and rich with
information. Our algorithm makes few assumptions about
what data the logs contain (and in what form), and we eval-
uate our method quantitatively on a large, public data set
from several of the world’s most powerful supercomputing
systems. As logs of this kind have only recently become
available [8], we believe ours is the first such work.

3 The Challenge

Let a log be a sequence L of lines l1 through lN , where N
is the total number of messages: L = (l1, l2, . . . , lN). Each
line li consists of a sequence of characters broken up into to-
kens s1 through sM according to some delimiting sequence
of characters (we use whitespace): li = (s1, s2, . . . , sM).
Let si,m denote the mth token of line i. M may be different
from line to line, and sm need not have the same semantic
interpretation throughout the log. We calculate and prepend
certain important tokens. Let t be the utime (universal
time in seconds) for the line, and so let ti be the time of line
i. In addition, let ci be the computer (hereafter node) that
generated the line.

We decompose logs into nodehours: all lines from a sin-
gle node c in one hour intervals corresponding to wall clock

time. Such lines are said to be contained by (or in) their cor-
responding nodehour; the count of a nodehour is the number
of messages it contains. We define Hc

j , the jth nodehour for
node c, to be Hc

j = {li | ci = c ∧ j ≤ ti/3600 < j + 1}.
Decomposing logs into documents by source and time

reflects how many system administrators divide and con-
quer logs, as learned through the trial-and-error of experi-
ence. Individual lines lack the context to sufficiently charac-
terize a message, whereas huge log dumps with interleaved
node output can be difficult to mentally parse. A nodehour
provides a happy medium between these extremes, and we
found it to be a useful abstraction for detecting alerts. Im-
plicitly, nodehours are chunks of data that we expect to be
relatively uniform in content over time—anomalous node-
hours are noteworthy events. Space constraints prevent us
from discussing alternative log decompositions.

3.1 Objective

Ultimately, the goal of reliability research is to minimize
unscheduled downtime. An alert detector can facilitate this
goal by accurately identifying when and where alerts are
generated, so that remedial or preventive action may be
taken. Every log line is categorically either an alert or not,
so nodehours, which consist of lines, can also be catego-
rized by whether they contain alerts or not. A natural objec-
tive is to automatically rank nodehours by the probability
that they contain alerts.

In the original data sets, every line is tagged with an alert
category using a combination of expert rules and manual la-
beling [8]. In this paper, we extend that tagging, due in part
to the results from our alert detection methods (Section 5.1).
The message tags are used exclusively for quantifying the
effectiveness of our alert detection methods: the methods
themselves ignore the tags entirely.

3.2 Metrics

Call Hc
j an alert nodehour if it contains at least one alert.

An alert detection algorithm outputs a list of nodehours,
sorted in decreasing order of the probability that each is an
alert nodehour. Let Rk be the union of nodehours formed
by taking the top k nodehours from this output list.

Scoring a ranking of nodehours depends on the defini-
tion of what constitutes a true positive (TP), false positive
(FP), true negative (TN), and false negative (FN). We ex-
perimented with several such definitions before determining
that binary scoring, described below, is most useful in prac-
tice. This conclusion is related to the fact that some faults
are bursty, meaning they produce numerous alert messages
in a short period of time. Although the majority of fault
types are not bursty [8], our alternative metrics dispropor-
tionately reward discovery of bursty alerts. (Many naı̈ve

algorithms seemed excellent, often near-optimal.)
The binary scoring metric treats nodehours as atomic,

considering only whether or not each nodehour Hc
j is an

alert nodehour. Nodehours are categorized as follows:
TP = {Hc

j ∈ Rk | ∃li ∈ Hc
j s.t. li is an alert}

FP = {Hc
j ∈ Rk | ∀li ∈ Hc

j , li is not an alert}
TN = {Hc

j /∈ Rk | ∀li ∈ Hc
j , li is not an alert}

FN = {Hc
j /∈ Rk | ∃li ∈ Hc

j s.t. li is an alert}
A set of nodehours, Rk, yields a single value each for

precision (TP
TP+FP), recall (TP

TP+FN), and the standard F1
measure (2∗TP

2∗TP+FP+FN). Binary scoring spurred us to in-
vestigate false positives, thereby finding new alert types that
other metrics had obscured; some of these alerts were pre-
viously unknown even to the system administrators.

Solutions are driven by the metrics used to assess them.
For alert detection, the scoring method must be chosen care-
fully to prevent bursty alerts from eclipsing the more elusive
ones. In addition to accurately reflecting the true value of an
algorithm, binary scoring accomplishes what per-alert cate-
gory threshold filtering [4, 10] does not: captures and filters
cross-category temporal correlations. Based on our experi-
ence in this study, and following the lead of previous work
[15], we recommend using binary scoring on nodehours.

3.3 Optimal and Baseline

OPT outputs exactly the list of alert nodehours and ap-
pears implicitly in all precision-recall plots as a horizontal
line at a precision of one. In addition to OPT, we compute
scores for a baseline that represents the predominant prac-
tice of system administrators. This Bytes baseline simply
ranks nodehours by the number of bytes of message data
they contain, from largest to smallest. This practice is based
on the fact that some alert categories are bursty, and thus the
highest-byte nodehours often do contain alerts.

4 Nodeinfo

The motivating premise of Nodeinfo is that similar com-
puters correctly executing similar work should produce sim-
ilar logs, in terms of content (i.e., line tokens). Nodeinfo is
universally applicable, in the sense that it can be computed
on any tokenizable log with timestamps. Nodeinfo does not
train on labeled data; it is unsupervised. The results repre-
sent a performance baseline for alert detection without in-
corporating system-specific information. The development
of Nodeinfo, as well as its performance on a small subset of
the data considered in this paper, is detailed elsewhere [15].
The current work contributes examination of its effective-
ness on multiple systems, larger systems, and over longer
time ranges (together resulting in nearly two orders of mag-
nitude more data). In addition, it examines the effects of
using different sized sliding windows, as done in practice.

The first step is to compute how much information each
token conveys regarding the computer that produced it. Let
W be the set of unique terms formed by concatenating each
line token with its position m in the line (wm = m, si,m),
and let C be the total number of nodes. Let X be a |W |×C
matrix such that xw,c is the number of times term w appears
in messages generated by node c. Towards understanding
how unevenly each term is distributed among nodes, let G
be a vector of |W | weights where gw is equal to 1 plus term
w’s Shannon information entropy [1]. Specifically,
gw = 1 + 1

log2(C)

∑C
c=1 pw,c log2(pw,c), where pw,c is the

number of times term w occurs on node c divided by the
number of times it occurs on any node (pw,c =

xw,c∑C
c=1 xw,c

).
Thus, a term appearing on only a single node receives a
weight of 1, and a term appearing the same number of times
on all nodes receives a weight of 0.

The second step ranks nodehours according to how many
high-information terms each contains. Let H be the set of
all nodehours and let Y be the |W | × |H| matrix where
yw,c,j is the number of times term w occurs in nodehour Hc

j .
The Nodeinfo value for each nodehour is then calculated as

1Nodeinfo(Hc
j) =

√√√√ |W |∑
w=1

(gw log2(yw,c,j+1))2.

Nodehours are then ranked by decreasing Nodeinfo value.
Those containing high-information terms will be ranked
high, and those containing low-information terms (even a
great number of them) will be ranked low. These calcula-
tions are modeled after the “log.entropy” weighting scheme
[1], where term entropy is calculated over node documents
and then applied to all nodehour documents in the corpus.

We now describe two practical considerations important
for reproducibility of our results. First, we exclude all
m = 1 terms in order to decrease the false positive rate
[15]. Second, we institute a minimum support threshold of
2. Most terms are infrequent, so this significantly reduces
memory overhead and has little impact on the outcome. For
instance, terms with a support of 1 must each have a weight
of 1, but can contribute no more than the square root of
their total number to a nodehour’s Nodeinfo(Hc

j) magni-
tude. One class of terms eliminated in this manner is hex-
adecimal addresses, which rarely facilitate alert detection.
We do not evaluate the actual impact of this threshold on
the results due to computational limitations.

1We accidentally omitted +1 in the ICDM’08-published version of this
paper, although all results were calculated as shown in this corrected ver-
sion. Without the +1, terms occurring a single time in a nodehour would
have no impact on that nodehour’s Nodeinfo score, regardless of gw , since
log2(1) = 0.

Alert Type/Cat. Count Nodehours Example Message Body (Anonymized)

Affected Systems: Thunderbird, Spirit, and Liberty
H / CHK COND 3,948,364 66 kernel: [hex] has CHECK CONDITION, sense key = 0x3

S / EXT INODE 1,299,603 47 kernel: EXT3-fs error [...] unable to read inode block - [...]
H / HDA NR 883,399 1846 kernel: hda: drive not ready for command

H / HDA STAT 883,398 1846 kernel: hda: status error: status=[...]
S / PBS U09 437,776 199 pbs mom: Unknown error 15009 (15009) in job start error from node [IP:port], [job]
S / PBS EPI 53,647 1192 pbs mom: scan for exiting, system epilog failed

S / CALL TR 40,810 839 kernel: Call Trace: [<[...]>] net rx action [kernel] [...]
S / PBS U23 5177 8 pbs mom: Unknown error 15023 (15023) in job start error from node [IP:port], [job]

Affected System: Blue Gene/L
H / DDR STR 243 241 ddr: Unable to steer [...]consider replacing the card

H / DDR EXC 41 41 ddr: excessive soft failures, consider replacing the card

Table 1. Additional actionable alert messages discovered via our algorithms.

5 Results

Using previously released supercomputer system logs
[8, 15], we ran Nodeinfo offline on data from four systems:
Liberty, Spirit, Thunderbird, and Blue Gene/L (BG/L). In
these initial tests, the algorithm did not significantly outper-
form Bytes; moreover, it was far from optimal. We now
describe the insights that allow us, in Section 6, to improve
performance several-fold.

5.1 Data Refinement

We investigated this mediocre performance by scanning
the output nodehour lists for false positives, starting with the
most highly-ranked nodehours that ostensibly contained no
alerts. In these nodehours, we discovered several new alert
types that had been incorrectly assigned null alert tags. Us-
ing the same rigorous verification process as was employed
to tag the original alerts, we updated the data sets with these
new alert types. This process involves discussions with the
system administrators and a characterization of the alerts
that allows us to identify them elsewhere in the log. We
also discovered 80 lines erroneously tagged as alerts in the
original data [8]. Two were test scripts run on Spirit by
an administrator, and the other 78 (on Thunderbird) appear
to have been the result of a buggy tagging script. The new
alerts are summarized in Table 1, similar to Table 4 in Oliner
et al [8]. “Cat.” is the alert category. Types are H (Hard-
ware) and S (Software). Bracketed text indicates omitted
information; a bracketed ellipsis indicates sundry text. In
all, we discovered ten alert categories, containing 7,552,458
new alert messages across 6325 nodehours.

One might speculate whether such alerts could have been
discovered via inspection, such as by selecting and reading
random nodehours. Years of intense scutiny by the system
administrators, and later by Oliner and Stearley, failed to
elucidate the alerts discovered via our automated method.
Thus, we believe such speculation is idle; our information-
theoretic algorithm revealed new alert categories with great

efficiency, and the administrators have since incorporated
these alerts into their production detection infrastructure.

5.2 Tagging Limitations

In addition to the ten alert categories enumerated in Ta-
ble 1, our analysis revealed dozens of other alert categories
that were more challenging to incorporate into our current
tagging framework. Whether or not certain messages are
alerts may depend on (i) the rate at which the messages
were generated (rate-sensitive), (ii) proximate messages or
the operational status [8] of the node (context-sensitive), or
(iii) whether the corresponding remedy is actually known or
elected (non-actionable).

Per-message alert tagging is straightforward (linewise
regular expressions) and precise (exact time and source of
an alert). Furthermore, the use of linewise tagging in this
paper is consistent with prior work [3, 6, 8]. Nevertheless,
limitations of our tagging tools and a poor understanding
of rate thresholds obliged us to exclude rate- and context-
sensitive messages as alerts. There is reason to expect that
including them would improve the performance of our tech-
niques. System administrators have advised us that non-
actionable alerts still merit their attention, and so we treat
them on par with actionable alerts for scoring.

5.3 Similar Nodes

Statistical anomaly detection algorithms compare a sam-
ple against a reference distribution and measure the varia-
tion from “normal”; such algorithms perform better when
the reference distribution is from the same homogenous
population as the sample. In the context of large clusters
and supercomputers, different nodes serve different func-
tions: computation, administration, communication, etc.

We ran Nodeinfo on logs from all nodes, and on func-
tionally similar subsets independently, but scored all results
using the full number of alerts in all the logs. When con-
sidering only compute nodes on Liberty, the Nodeinfo algo-

(a) Blue Gene/L. Detection performance on the IO nodes in isolation
exceeds that of detection over the log as a whole, even when dropping
alerts from every other functional group on the floor.

(b) Spirit. For comparison, the compute nodes group on Spirit yielded
area under the curve more than twice that of both Bytes and Nodeinfo
run on the entire log, even without considering the remainder of the data.

Figure 1. Precision-recall curves for the online Nodeinfo detector. The legend indicates the func-
tional group, window size, area under the curve, and maximal F1: group.window (area, F1).

System Counts C % A/IO % O %
Blue Gene/L Total: 1,816,627 87.08 12.10 0.8200
(8.48% alerts) Alert: 154,014 45.42 54.52 0.0600
Thunderbird Total: 15,255,833 89.50 0.6603 9.840

(0.163% alerts) Alert: 24,877 85.81 0.0764 14.11
Spirit Total: 6,731,957 98.76 0.3894 0.8506

(0.207% alerts) Alert: 13,933 93.12 5.828 1.052
Liberty Total: 1,820,433 96.07 1.492 2.438

(0.282% alerts) Alert: 5139 97.90 0.1946 1.905

Table 2. Distribution of total and alert node-
hours across node types. ‘C’ is Compute,
‘A/IO’ is Admin and IO, and ‘O’ is Other.

rithm achieves a maximal F1 score that is seven times better
than when non-compute nodes are included. In other words,
even when we cripple Nodeinfo by showing it only logs
from the compute nodes, its score against the entire data
set improves. Although we omit these offline results, the
online experiments show similar improvements (Section 6).

Table 2 shows the distribution of nodehours from each
functional group: compute nodes, administrative nodes
(Thunderbird, Spirit, and Liberty), IO nodes (BG/L), and
other nodes. Columns 4–6 give the percent contribution of
that functional group to the total number of nodehours (first
row) and the number of alert nodehours (second row). For
example, only 12.1% of the nodehours on BG/L were from
I/O nodes, but this functional group contributed 54.52% of
the alert nodehours. Considering that only 3.9% of Lib-
erty’s nodehours were from non-compute nodes, the signif-
icant impact of their exclusion on Nodeinfo is particularly
impressive. These data support our claim that similar com-
puters (compute nodes) tend to generate similar logs.

6 Online Detection

The offline techniques are valuable for exploring the
data, but a production setting requires online detection with
low latency. In this section, we modify Nodeinfo to oper-
ate using a sliding bounded history window. Furthermore,
we try running on major functional groups individually, to
evaluate the impact of leveraging our observation regarding
similar nodes.

We use a “sticky” sliding window to compute the Node-
info score for the current nodehours: for reasons of effi-
ciency, this window is not of fixed size; it always starts at
midnight W − 1 days prior, for a window size of W days.
For example, if W = 30, then all nodehours on January
30th will use data generated since January 1st at 12:00 AM.
Thus, W is an upper bound on the amount of history con-
sidered in the computation. We consider windows of 30, 60,
and 90 days. For consistency, the first 90 days of data are
omitted from scoring all online experiments.

To evaluate our similar nodes hypothesis, we divide the
logs into functional groups (see Table 2) and run Node-
info on each group; the resulting lists of ranked nodehours
are then scored against all functional groups. (Alerts in
other groups are automatically false negatives.) Results
from BG/L and Spirit are plotted in Figure 1, and these
are representative. For example, Nodeinfo on Spirit (Fig-
ure 1(b)) performs slightly worse than Bytes when run on
logs from all nodes, but beats it by more than twice (area
under the curve) when considering functional groups indi-
vidually. For comparison, consider the area under the curve
metric when the results in Figure 1 are scored against only

their respective functional groups: on the BG/L IO nodes,
Nodeinfo achieves 0.63 of OPT; on the compute nodes, the
metric improves nearly ten-fold. The critical conclusion is
that we can leverage the homogeneity of large systems to
dramatically improve the quality of alert detection.

Our results show that (i) Nodeinfo is an improvement
over Bytes, (ii) Nodeinfo performs better on homogenous
functional groups than on all the log at once, and (iii)
larger window sizes yield marginal improvements, suggest-
ing both that the logs are changing slowly enough for the
past few months to reflect the future and that the computa-
tionally inexpensive parameters yield competitive results.

7 Contributions

The central goal of reliability research for high perfor-
mance computing is to minimize unscheduled downtime. In
order to do so, we must reduce the time that system adminis-
trators spend investigating new fault types and performing
root cause analysis. Better techniques for alert detection
are an important step toward more efficient system manage-
ment, automatic fault prediction and response, and greater
overall reliability.

In this paper, we formalized the alert detection problem;
presented Nodeinfo, a general, unsupervised alert detection
algorithm; and quantitatively demonstrated its effectiveness
on 81 GB of public supercomputer system logs. Our most
salient insight into the alert detection problem is that simi-
lar nodes running similar workloads tend to generate similar
logs—we can better identify anomalous behavior when nor-
mal behavior appears more uniform. The most compelling
evidence of our success is that we discovered several new
alert categories that had eluded experts for years and that
our online implementation of Nodeinfo [14] is in produc-
tion use on Red Storm, Thunderbird, and Liberty. Accord-
ing to the administrators of these systems, “[our method]
has automatically detected, and more importantly isolated,
a wide range of problems,” and they have found it to be “a
useful diagnostic tool.” Thus, our work has already had a
positive operational impact on the systems we studied.

Acknowledgments

The authors would like to thank Sue Kelly, Bob Bal-
lance, Sophia Corwell, Ruth Klundt, Dick Dimock, Michael
Davis, Jason Repik, Victor Kuhns, Matt Bohnsack, Jerry
Smith, and Josh England of SNL; Kim Cupps, Adam
Bertsch, and Mike Miller of LLNL; Ramendra Sahoo of
IBM; Daniel Ramage of Stanford; and Xuân Vũ.

References

[1] M. W. Berry, Z. Drmac, and E. R. Jessup. Matrices, vector
spaces, and information retrieval. SIAM Rev., 41(2):335–
362, 1999.

[2] J. L. Hellerstein, S. Ma, and C. Perng. Discovering action-
able patterns in event data. IBM Systems Journal, 41(3),
2002.

[3] Y. Liang, Y. Zhang, M. Jette, A. Sivasubramaniam, and R. K.
Sahoo. Blue gene/l failure analysis and prediction models.
In Proceedings of the Intl. Conf. on Dependable Systems and
Networks (DSN), pages 425–434, 2006.

[4] Y. Liang, et al. Filtering failure logs for a bluegene/l proto-
type. In Proceedings of the Intl. Conf. on Dependable Sys-
tems and Networks (DSN), pages 476–485, June 2005.

[5] Y. Liao and V. R. Vemuri. Using text categorization tech-
niques for intrusion detection. In 11th USENIX Security
Symposium, August 5–9, 2002., pages 51–59, 2002.

[6] Logsurfer. A tool for real-time monitoring of text-based log-
files. http://www.cert.dfn.de/eng/logsurf/, 2006.

[7] S. Ma and J. Hellerstein. Mining partially periodic event
patterns with unknown periods. In Proceedings of the In-
ternational Conference on Data Engineering (ICDE), pages
409–416, 2001.

[8] A. J. Oliner and J. Stearley. What supercomputers say: A
study of five system logs. In Proceedings of the 2007 Inter-
national Conference on Dependable Systems and Networks
(DSN), 2007.

[9] J. R. Reuning. Applying term weight techniques to event log
analysis for intrusion detection. Master’s thesis, University
of North Carolina at Chapel Hill, July 2004.

[10] R. K. Sahoo and A. J. Oliner, et al. Critical event prediction
for proactive management in large-scale computer clusters.
In Proceedings of the 9th ACM SIGKDD, International Con-
ference on Knowledge Discovery and Data Mining, pages
426–435. ACM Press, 2003.

[11] B. Schroeder and G. Gibson. A large-scale study of failures
in high-performance-computing systems. In Proceedings of
the Intl. Conf. on Dependable Systems and Networks (DSN),
Philadelphia, PA, June 2006.

[12] J. Stearley. Towards informatic analysis of syslogs. In IEEE
International Conference on Cluster Computing, pages 309–
318, 2004.

[13] J. Stearley. Scrubbed logs from five top supercomputers.
http://www.cs.sandia.gov/∼jrstear/.logs-alpha1, 2008.

[14] J. Stearley. Sisyphus—a log data mining toolkit.
http://www.cs.sandia.gov/sisyphus, 2008.

[15] J. Stearley and A. J. Oliner. Bad words: Finding faults
in spirit’s syslogs. In Workshop on Resiliency in High-
Performance Computing (Resilience), 2008.

[16] R. Vaarandi. A data clustering algorithm for mining pat-
terns from event logs. In Proceedings of IEEE International
Workshop on IP Operations and Management (IPOM),
pages 119–126, October 2003.

[17] R. Vaarandi. A breadth-first algorithm for mining frequent
patterns from event logs. In Proceedings of the 2004 IFIP
International Conference on Intelligence in Communication
Systems, volume 3283, pages 293–308, 2004.

[18] A. Wespi, M. Dacier, and H. Debar. An intrusion-detection
system based on the teiresias pattern-discovery algorithm. In
EICAR Annual Conference Proceedings, pages 1–15, 1999.

[19] K. Yamanishi and Y. Maruyama. Dynamic syslog mining for
network failure monitoring. In Proceedings of the 11th ACM
SIGKDD, International Conference on Knowledge Discov-
ery and Data Mining, pages 499–508, New York, NY, USA,
2005. ACM Press.

